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Abstract—JMH is the standard framework for developing
and running Java microbenchmarks—lightweight performance
tests used to evaluate the execution time of small Java code
segments. A key challenge in designing JMH microbenchmarks
is determining the appropriate number of warm-up iterations–
repeated executions needed to bring microbenchmarks to a
performance steady state. Too few warm-up iterations can
compromise result quality, as performance measurements may
not accurately reflect steady-state behavior. Conversely, too many
warm-up iterations can unnecessarily increase testing time. Here,
we present AMBER, an AI-enabled extension of JMH, which
leverages Time Series Classification algorithms to predict the
beginning of the steady-state phase at run-time and dynamically
halt warm-up iterations accordingly. Empirical results show
the potential of AMBER in enhancing the cost-effectiveness of
Java microbenchmarks. A demo video of AMBER is available at
https://www.youtube.com/watch?v=7zOngDQ1z k.

Index Terms—Performance Testing, Microbenchmark, JMH

I. INTRODUCTION

Microbenchmarking is a type of small-scale performance
testing widely used to evaluate the execution time of Java
software [1]. This testing methodology involves repeatedly
executing a small code segment while measuring its execution
time. During the initial phase of execution, Java microbench-
marks are subject to a wide range of JVM optimizations,
which make execution times highly unstable and potentially
misleading [2]–[4]. Once these optimizations are completed,
the microbenchmark reaches a steady-state performance [2], [5].
Therefore, a crucial factor in gathering quality measurements
during microbenchmarking is properly configuring the number
of “warm-up iterations” [3]–[5]–repeated executions performed
to bring the microbenchmark to steady-state performance before
starting to collect measurements.

Developers mostly rely on Java Microbenchmark Harness [6]
(JMH), the de-facto standard for building and running Java
microbenchmarks [1], [7], to “manually” configure the desired
number of warm-up iterations (state-of-practice). These itera-
tions are usually estimated based on the developers’ domain
expertise; however, based on recent studies [5], they frequently
turn out to be incorrect. In line with the recent surge of research
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interest in JMH microbenchmarks [8]–[14], Laaber et al. [15]
have proposed techniques for dynamically stopping warm-up
iterations by applying thresholds to statistical properties of
measurements (e.g., coefficient of variation). These state-of-
the-art techniques have demonstrated higher effectiveness than
developers’ manual configurations in identifying the actual
end of the warm-up phase. However, the resulting warm-up
iterations proved often suboptimal, leading to either reduced
result quality or extended testing times [5].

In this paper, we present AMBER (AI-enabled Java
Microbenchmark Harness), a tool that implements our AI-
driven approach [16] to halt warm-up iterations at run-time
dynamically. AMBER relies on Time Series Classification (TSC)
algorithms to predict whether a set of measurements is stable
or not, and it exploits this capability to stop warm-up iterations
at run-time dynamically. We conducted an empirical evaluation
of AMBER [16] on 586 microbenchmarks from 30 established
Java Open-Source software while integrating three different
state-of-the-art TSC algorithms, namely Fully Convolutional
Network [17] (FCN), Omni-Scale Convolutional Network [18]
(OSCNN), and Random Convolutional Kernel Transform [19]
(ROCKET). Results show that AMBER noticeably improves the
cost-effectiveness of performance testing. Specifically, when
compared to both the state-of-practice and the state-of-the-art,
it achieves a net improvement–in either result quality or testing
time–in up to +27% and +35.3% of the microbenchmarks,
respectively. AMBER extends the JMH framework, enabling
practitioners and researchers to seamlessly adopt our AI-driven
approach for dynamically halting warm-up iterations.

II. THE AMBER APPROACH

Fig. 1 provides a simplified visualization of the AMBER
process, which comprises three main phases: (i) Data Prepro-
cessing, (ii) Model Training, and (iii) Application. The initial
phases are executed offline, while the final phase is performed
during performance testing. During the Data Preprocessing
phase, AMBER preprocesses a time series of performance
measurements with a (known) predefined warm-up end. This
step involves segmenting the time series into sub-intervals
and labeling each as either stable or unstable, based on the
presence of warm-up measurements. The labeled segments
are subsequently used to train a Time Series Classification
model (Model Training). Finally, the trained model is applied
to dynamically halt warm-up iterations at runtime (Application).

https://www.youtube.com/watch?v=7zOngDQ1z_k
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Fig. 1: Overview of the main phases of AMBER: Data Preprocessing, Model Training and Application.

A. Data Preprocessing

This phase focuses on preparing the training set for su-
pervised learning. To accomplish this, AMBER begins with a
time series of performance measurements and an annotation
that indicates the end of the warm-up phase. The time series
represents the observed execution time over sequential iterations
of a JMH microbenchmark. The annotation identifies the
iteration at which the performance steady state is achieved,
following the methodology proposed by Barrett et al. [2].

To build our training set, we extract smaller, overlapping
segments of fixed size from the original time series, each
representing a contiguous block of performance measurements.
These segments are then binary labeled as (i) stable if the
segment includes only measurements taken during the steady
state or (ii) unstable if the segment contains at least one
measurement from the warm-up phase.

B. Model training

Our learning objective is to perform binary classification
on segments of performance measurements. We employ TSC
algorithms to categorize each segment as either stable or
unstable. In particular, we explore three distinct TSC algorithms
described in detail below.

FCN was introduced by Wang et al. [17] for classifying uni-
variate time series. This neural network architecture functions
as a feature extractor by stacking three convolutional layers,
each accompanied by a batch normalization layer and a ReLU
activation layer. The extracted features are processed through a
global average pooling layer and fed into a softmax classifier
to produce the final output label.

OSCNN introduces the Omni-Scale block [18], which
employs a universal rule to automatically determine the
kernel sizes for one-dimensional convolutional neural networks
(1D-CNNs). This method facilitates selecting the optimal
receptive field size, a crucial factor that significantly impacts
the performance of 1D-CNNs in time series classification
(TSC) [20].

ROCKET is a pipeline-based classifier [19] that utilizes
a large set of randomly parameterized convolutional kernels
to transform the input data. The transformation is achieved

through two pooling operations: extracting the maximum value
and calculating the proportion of positive values. These pooled
features are combined into a feature vector for each kernel.
The resulting feature vectors are then used to train a Ridge
Classifier [21] through cross-validation.

C. Application

AMBER employs TSC models to dynamically identify when
a microbenchmark reaches steady-state performance. During
the execution, AMBER continuously monitors and analyzes
incoming performance measurements using the TSC model.
When the model detects an achieved steady state, AMBER
immediately halts the microbenchmark execution and returns
the current performance measurements for evaluation.

The core idea of our approach is leveraging TSC models
to effectively distinguish between stable and unstable mea-
surements so that AMBER can automatically terminate the
microbenchmark execution when the warm-up phase concludes,
ensuring high-quality results with minimal testing time.

III. AMBER ARCHITECTURE AND INNER WORKING

AMBER is implemented as an extension of JMH, introducing
the ability to halt warm-up iterations during execution dynam-
ically, which is achieved through the integration of a TSC
algorithm, as described in section II-C.

«Java Module»

jmh-core

«Java Module»

jmh-generator-
annprocess

«Docker Container»

jpt_service

Fig. 2: Overview of the architecture of AMBER

Fig. 2 shows the architecture of AMBER. The figure
shows the two core modules of JMH, namely jmh-core
and jmh-generator-annprocess, as well as our ex-
tension that integrates the ability to dynamically halt warm-
up iterations at run-time, namely jpt-service. The
jmh-generator-annprocess generates the boilerplate
code for Java microbenchmarks. Specifically, during compi-
lation, it scans the methods and classes that are annotated



with JMH-specific annotations (like @Benchmark), and it
generates microbenchmark code following JMH guidelines for
reliable Java performance testing. jmh-core includes the core
implementation of the microbenchmarking engine, which is
responsible for executing benchmark methods, managing warm-
up and measurement iterations, and collecting performance
measurements. In addition, it defines JMH-specific annotations
that users can apply to their code to configure aspects of their
microbenchmarks, including the number of warm-up iterations
(@Warmup). AMBER modifies the jmh-core module by
introducing a @DynamicHalt annotation to enable dynamic
halting of warm-up iterations. This annotation can be applied
at either the class or method levels. When applied at the class
level, the dynamic halting policy is enforced on all benchmark
methods within the Java class. Conversely, when applied at the
method level, the policy is restricted to the benchmark method
it annotates.

With the traditional @Warmup annotation, which statically
pre-defines the number of warm-up iterations, the generated
microbenchmark code works as follows: After each warm-up
iteration, the microbenchmark checks if the current number of
iterations exceeds the configuration specified by the developer.
Once this condition is met, the microbenchmark begins
collecting performance measurements. The @DynamicHalt
annotation replaces this static check with a dynamic evaluation
using a TSC model. At each iteration, AMBER invokes the
jpt-service, asking the TSC model to predict whether
the current set of measurements is stable or unstable. If
the measurements are deemed stable, the microbenchmark
dynamically halts the warm-up iterations and begins collecting
performance measurements. Otherwise, it runs an additional
warm-up iteration and repeats the process.

We implement the jpt-service as a Flask1 web app de-
ployed in a Docker2 container, which exposes a RESTful API to
invoke TSC pre-trained models, i.e., FCN, OSCNN, and Rocket,
as described in Sections II-A and II-B. The @DynamicHalt
annotation allows users to choose the desired model via a pa-
rameter, e.g., @DynamicHalt(model="OSCNN") specifies
the OSCNN model.

@Warmup(iterations = 500)

@Measurement(iterations = 100)

public class FlattenRangePerf {

...

@Benchmark

public void observable(Blackhole bh) {

observable.subscribe(new PerfConsumer(bh));

}

}

Listing 1: A sample developer’s microbenchmark annotation for

warm-up configuration.

1https://flask.palletsprojects.com
2https://www.docker.com

@DynamicHalt(model = "OSCNN")

public class FlattenRangePerf {

...

@Benchmark

public void observable(Blackhole bh) {

observable.subscribe(new PerfConsumer(bh));

}

}

Listing 2: Microbenchmark annotation featuring AMBER.

IV. USAGE TEMPLATES

This section outlines the steps required to use AMBER. The
AMBER setup instructions are provided in the README file
of our online appendix3 and the video tutorial4.

Once the AMBER configuration is completed, the pri-
mary step to enable AMBER dynamic halt is to replace
the JMH @Warmup and @Measurement annotations with
the @DynamicHalt annotation. Listings 1 and 2 represent
practical examples of a microbenchmark from the RxJava
library5 using the original and replaced annotations, respec-
tively. As introduced before, the classification algorithm in
AMBER can be specified using the model element in the
@DynamicHalt annotation. For instance, in Listing 2 we
selected the OSCNN algorithm. Optionally, it can also indicate
the host and port exposing the dockerized jpt service in the
annotation. Similarly, all the parameters can be specified by
command line arguments. Once the halt has been configured,
the next step is building and running the benchmark classes.

As in JMH, the final report containing the number of warm-
up iterations and measurements can be exported in JSON format
using the -rf json command. The final report provides
important insights concerning the amount of warm-up iterations
performed using the dynamic halt.

Fig. 3 presents an example of dynamic halting using AMBER,
compared to the developer warm-up configuration for the
microbenchmark shown in Listings 1 and 2. Specifically, the
Fig. 3b highlights the testing time saved when applying the
dynamic halting of AMBER.

V. EVALUATION SUMMARY

In a previous work [16], we validated and experimented
with the TSC algorithms and compared them with the state-of-
practice (SOP) and state-of-the-art (SOTA) approaches. First,
we validated the suitability of TSC algorithms (i.e., FCN,
OSCNN, and ROCKET) in classifying stable and unstable
performance measurements. Then, we conducted an empirical
evaluation by comparing the algorithms with the state-of-
practice (SOP) and state-of-the-art (SOTA) approaches. Please
consider that AMBER has been implemented and evaluated in
three distinct versions, each integrating a specific classification
algorithm. We assessed the effectiveness of each approach in

3https://github.com/AntonioTrovato/AMBER
4https://youtu.be/7zOngDQ1z k
5https://github.com/ReactiveX/RxJava.git

https://flask.palletsprojects.com
https://www.docker.com
https://github.com/AntonioTrovato/AMBER
https://youtu.be/7zOngDQ1z_k
https://github.com/ReactiveX/RxJava.git
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(a) Developers warm-up configuration.
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(b) AMBER dynamic halt.

Fig. 3: Benchmark execution through (a) a developer’s warm-up
configuration and (b) the AMBER dynamic halt using OSCNN.

terms of both results quality and testing time. Specifically,
concerning results quality, we aimed to assess whether the
gathered measurements significantly deviate from the ground-
truth steady-state values derived following the approach pre-
sented in [2]. Regarding the testing time, we analyzed the total
time required to execute the microbenchmarks across all the
approaches. The analysis used an extensive JMH performance
measurements dataset [5], involving time series extracted from
586 JMH microbenchmarks across 30 popular Java Open-
Source software systems. In the following, we summarize the
achieved results in each research question.

a) RQ1: To what extent can TSC models accurately
classify stable and unstable measurements?: Results depicted a
good prediction accuracy in leveraging TSC models to classify
stable and unstable time series segments, with F1-scores
ranging between 0.748 and 0.867. Specifically, we noticed
that neural network-based models (i.e., FCN and OSCNN)
demonstrated lower F1-scores but achieved higher balanced
accuracy compared to ROCKET that, despite having a higher
recall rate, predicted more false positives.

b) RQ2: How does AMBER compare to the state-of-
practice (SOP) in Java microbenchmarking?: In this analysis,
we compared the effectiveness of AMBER with the SOP, which
halts the microbenchmarks execution after the fixed number of
warmup iterations defined beforehand by the developers. Con-
cerning results quality, we observed an evident improvement
when employing AMBER equipped with network-based TSC,
namely +25.3% for FCN and +27% for OSCNN. In contrast,
when using ROCKET, we observed only 9.4% improvements
and 25.9% regressions, ascribable to its higher false positives
rate. Regarding the testing time, AMBER significantly reduced
the testing duration compared to the SOP. Specifically, the
SOP approach overestimates the end of the warmup phase in
63.9% of cases, while our framework overestimates it in only
38.1% (FCN), 41.2% (OSCNN), and 13% (ROCKET) of the
cases. Overall, the results translate into a net improvement
in either results quality or testing time in up to +27% of
microbenchmarks, with OSCNN demonstrating the highest net
improvement.

c) RQ3: How does AMBER compare to the state-of-the-art
(SOTA) in Java microbenchmarking?: We compared AMBER
with all three variants proposed by Laaber et al. [15] to
dynamically stop warmup iterations, namely COV, RCIW,
and KLD. Results demonstrated that, although ROCKET
achieved lower results quality than SOTA, neural network-based
models generally outperformed the SOTA approaches regarding
results quality, providing up to +35.3% of improvements.
Additionally, we observed that FCN and OSCNN reported
improved testing time for about half of the microbenchmarks.
In summary, when employing AMBER equipped with neural
network-based TSC models, such as FCN and OSCNN, we
achieved improvements over the SOTA in either result quality or
testing time in approximately half of the microbenchmarks, with
percentages ranging from 50.3% to 59.6%. The percentages of
regressions are lower (20-28.8%), thus resulting in substantial
net improvements. Overall, AMBER equipped with OSCNN
achieved the best results, leading to a net improvement in up
to +35.3% of microbenchmarks.

VI. LIMITATIONS AND EXTENSION

A current limitation of AMBER is that it exclusively supports
a specific combination of measurement iterations and time.
Specifically, when the microbenchmark is configured with
the @DynamicHalt annotation, the number of measurement
iterations and the measurement time are automatically set to
100 iterations and 100 milliseconds, respectively. A potential
extension for AMBER could involve supporting additional
measurement configurations, including preprocessing measure-
ments at runtime to align with TSC model input formats or
training alternative models that support measurement segments
of varying sizes.

In the current AMBER implementation, jpt-service is
developed as an independent external service and deployed
as a Docker container. Future versions could reimplement
jpt-service in Java, transforming AMBER into a fully
self-contained tool and potentially streamlining its adoption.



Researchers and practitioners can extend AMBER to support
additional, more effective TSC algorithms, which can be easily
achieved by implementing additional RESTful endpoints and
the corresponding supported model parameter values for the
@DynamicHalt annotation.

Regarding the limitation of the empirical evaluation of
AMBER (e.g., threats to validity), we refer the reader to our
previous paper [16].

VII. CONCLUSION

This paper presents AMBER, an AI-driven tool designed
to dynamically halt warm-up iterations at run-time. Empirical
results demonstrate that AMBER improves result quality or
significantly reduces testing time across state-of-practice and
state-of-the-art techniques. Integrated as an extension of JMH,
AMBER ensures seamless compatibility with any existing
JMH microbenchmarking suite, making it readily accessible to
researchers and practitioners.

VIII. DATA AVAILABILITY STATEMENT

The code and data of this tool demo are permanently stored
in Zenodo [22].
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